gents are different. This difference is most important for c¢? = 1, Therefore, the solutions obtained with and
without account of the nonlinearities of the equation of state of the liquid can differ from each other. Thus,
Fig. 6 shows the dependence of the soliton amplitude on the square of its velocity (Ci <el= cé). Curve 1
corresponds to a linear equation of state of the liquid, and curve 2 — to the nonlinear. The equilibrium state of
the medium at ne =# = is of the form pe = 2py, Vo ! = pe/Py= 2 ke = 1074, Ve = 0,y = 1, 4, p, = 10° Pa/p i,
It is seen that for solitons whose velocities squared are smaller than 0.9 the amplitude coincide for the linear
and nonlinear equations of state of the liquid, For c¢?> 0.9 the amplitudes differ substantially.

Thus, the exact solution of the nonlinear equations of motion of a liquid with gas bubbles has been ob~
tained for one-dimensional stationary perturbations. In this case account of the hydrodynamic nonlinearity and
of the compressibility of the liquid component of the medium leads to an extended class of stationary solutions.

The author is grateful to vV, K, Kedrinskii for his interest in this work and for useful discussions.
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PROBLEM OF NONSTATIONARY TRANSPORT
PHENOMENA IN MULTIPHASE MEDIA

Yu. V. Pervushin UDC 541.182:532.7:539.219.3

Nonstationary transport phenomena in multiphase medium in many ways are determined by kinetic pro-
cesses at the interfaces, The simplest idealizations, introduced during Fourier's and Fick's times, when in-
terphase kinetics were given by the boundary conditions of the type

0n,/0R = aij(ni —_ nj),,

cannot reflect the basic features of transport processes when the physical conditions at the interfaces change
considerably and rapidly. This especially concerns problems with mobile boundaries, arising, for example, in
analyzing the kinetics of phase transformation [1-5]. In the spherical variant, nonstationary effects arise, in
particular, due to Laplacian pressure, which is clearly related to the motion of the boundary (~1/R(t)).

We shall give a derivation of the general type of boundary kinetics, based on the process of one~dimen-
sional transport of a fixed component of matter through the interface R of two media (phases), which is the
surface of discontinuity for the concentration field of the given component, We shall examine the model indi-
cated schematically in Fig, 1. It assumes that the volume of the media can be separated into some elementary
regions of molecular size ¢j and, in addition, they can vary in time kinetically and deformationally, i.e., a; =
a;{t).. For solid media, the parameter aj corresponds to a constant lattice, while for gas media it corresponds
to the free path of particles, We assume that the motion of particles occurs in some potential field, whose av-
erage relief is shown schematically in Fig. 1. The presence of external and internal fields introduces an
asymmetry into the potential relief of the particles, changing the kinetics of their transfer in the forward and
backward directions. In what follows, the average velocities of such random wandering W; will be distinguished

Donetsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No, 1, pp. 82-88, Janu-
ary-February, 1983. Original article submitted August 27, 1981,
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Fig, 1

by orientations of arrows. In addition, we shall agsume that the dimensions Aj(t) of the unit cells, directly ad-
jacent to the boundary, are distorted and differ from the bulk cells. The model of the phases proposed com-
bines to some extent the elements of discrete and continuous models.

In accordance with the kinetic scheme in Fig. 1, the conservation laws for the number of particles for
two elementary boundary regions, adjacent to the boundary on the left and the right, have the form
0 L)
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where nj are the boundary concentrations of the component examined on the left and right side of the boundary
R. The average velocities of wandering Wy, Wy, and the average velocity of crossing through the boundary
\Wij are calculated by averaging over the corresponding particle distribution functions in a given direction tak-
ing into account the transfer probabilities, Expanding and taking into account the transport equation within the
volume of the phases, which follow from analogous conservation laws for the elementary regions (x + ai/2) and
have the form
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ters @i and )4 that the boundary kinetics are descrlbed by the system of equations
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The boundary kinetics are sensitive to the structure of the boundary layer. For two variants, when
Ai/ai = VY2 and 1, 8; = 0 and the boundary conditions are close to the traditional form,

In the spherical case, the boundary conditions on the surface of the sphere are likewise determined by
the form (2), but the kinetic coefficients ujj and Djj contain, respectively, the additional terms

1 AZ A aD; | 2a; l?—_ A

The boundary kinetics in this case depend explicitly on the coordinates of the interface R, Additional
terms will be important only in describing the evolution of micronuclei with dimensions R ~ Aiz/ai.

Boundary conditions of the type (2) must also occur for nonstationary heat transfer. However, their
derivation involves considerable difficulties, stemming from the fact that the transfer of energy occurs along
several channels: radiation, collisions, reactions, etc.

Let us consider the case of moveable interfaces, emphasizing processes such as vaporization, dissolu-
tion, melting, and the reverse processes. For definiteness, we shall examine a finite two-phase single-com-
ponent system, closed in the sense that there is no exchange of particles with an external medium, Let us
assume that the entire system occupies the interval (0, L) and, in addition, the origin is fixed to phase 1. In
this case, the velocity of displacement of the interface is determined by the conservation laws

R(t) L

il 8 )

2 mEnar==3 | n@yd=1.®0,
o R(t) .

where the current through the boundary is given by
Jm(Bv t) == —Wm(Ra t)”1(Ra £) + Wzl(Ra t)nz(Hv t)-

Using the volume equations (1), we finally obtain
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The terms J,(0, t) and J,(1, t) appear in Egs. (3) because of the restrictions due to the finiteness and
closure of the two-phase system introduced above. It turns out that the finiteness of the system is explicitly
manifested in the velocity of the interface. It is as if the separating surfaces feel one another. We also note
that the classical variant of Stefan's problem [6], when R = const (dn/8R), is an approximation, which is valid
only in exceptional cases.

We shall illustrate the variant when the kinetic parameters do not depend on time explicitly. In this case,
there must exist a class of solutions when nj (t) = nj (R (%)), i.e., the change in concentrations at the interface
in time is determined only by the displacement of the interface. From here we have

On,/0t = Ron,/0R. _ (5)
Relations (3)-(5) transform the boundary conditions (2) to the form
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Iy = 140, &) — oy(a)No(R, 1), I, == Jo(L, 1) + 0a(a)No(R, 1). (8)

The final system of equations (6) and (7) is an algebraic system for the unknowns R and Y = n,/14,
whose quite symmetrical form indicates the simplicity of the qualitative analysis of the system and its approx~
imate solution,

The consistency of the two quadratic equations indicates that one of the roots f{l = f1(Y) of the first equa-
tion (6) necessarily must equal one of the roots R, = f,(Y) of the second equation (7), In this case, the condi-~
tion

1Y) == [5(Y)
determines the value of Y in the form of the function
Y = ny/ny = @(v;, W;i;, Dy, R, ny), (9)
establishing the relation between the boundary concentrations. The explicit dependence on nj ‘originates from
the terms Ij/nj in Egs. (5) and (6) and the explicit dependence on R appears in the case of spherical diffusion,

when the kinetic parameters Djj and ujj are functions of R. Substitution of the function ¢ into the correspond-
ing root of the quadratic equation transforms the law of motion of the boundary into the form

R = {(Y) = f(vs, Wi;, Dy, R, ny), (10)

where the unknown functions nj (R) still enter. Turning now to Egs. (3), taking into account the dependences
(8)-(10), we obtain

{ 0n 1 . I
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This system determines the boundary concentrations nj (vj, Wij» Di, R), and returning to Eq. (10), the velocity
of the boundary and the dependence R (t), i.e., a set of boundary conditions on the moveable boundary is ob-
tained for the solution of the diffusion problem in the bulk of the two-phase medium.

The program presented must essentially be a self-consistent program, since the quantities Ij are func-
tionals of the volume concentrations nj(x, t), In order to realize the program in practice, it is necessary to
postulate from physical considerations the starting values of the quantities Ij.

We shall perform the initial stage of the solution for the particular case of one~dimensional diffusion
with constant kinetic coefficients, assuming in the first approximation that Ij = 0. As a result of the solution
of the system (6) and (7), we obtain

Y = ny/n, = oy, Wij, D) = const = n,(Ro)/n(Ry) = Yy, (12)

and, in addition, the ratio of the initial concentrations is predetermined by the form of the function ¢. Corre-
spondingly, according to (10}, we have

R = (Vo) = fo = const, R(t) = Ry + fot. (13)
The sign of the quantity f; gives the direction of motion, Finally,
an q ’ ) —
X, =;T§R‘“D Oy WaYo— fo) = o my = (By) exp — - 8, (14)

The subsequent solution of the volume diffusion problem with boundary conditions (12)-(14) gives the
form of the functions Ij (R), and the cycle (9)-(11) determines the next approximation. In this case, it is ap~
parently useful to transform the systerm (11), using relation (9), into the form

Dy9ny/0R = (1 — Nmy + Wany — I, (15)
28n2/8R (ve — Hne — Wyny, — - I,

which after reinstating the dependence R=f (ni, I;) becomes a determined system, Equations (15) essentially
determine the boundary conditions on the moveable interface, We note that for finite and closed systems, they
are nonlinear even with constant kinetic parameters vj, Dij, Wjj, when the simplest type of concentration de-
pendence f = f(Ij/n;) is realized. The specific approximate form of the system of equations (15) can be ob~
tained by substituting into it expansions of the functions f in a series with respect to the corresponding quanti-
ties. In addition, one of the equations of the system obtained can be eliminated, if the coupling between n; is
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established from the dependence (9), performing an analogous expansion for the function I;/nj, i.e., assuming
that f=f,+ ji/ny + j/my, 1/Y =ny/ny = 1/Y, + my/ny + my/n,, where
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we obtain
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Subsequent calculations of the boundary concentrations and the law of motion of the boundary f = R involve
purely technical details.

Investigations of the stability of the motion of the interface, involving determination of the form of the
dependence R = f(R), are of great practical interest. This especially concerns the problem of the evolution of
spherical nuclei of the new phase.

Stable motion of the interface in a single direction is possible only when the sign of the function f(R) is
constant. If, on the other hand, the function f(R) changes sign, then the motion of the boundary is not single-
valued. Assume that the change in sign occurs at the points Rj, i.e., f(Rj) = 0. Then in the case of af/aR[R:Ri
> 0, a spherical nucleus of the new phase with initial radius R;> Rj will grow, while a nucleus with R, < Rj
will become overgrown. For 8f/8R|R:Ri < 0, nuclei with Ry < R; grow, while nuclei with R, > R; decrease in
size. In the last variant, in the presence of only a single point R;, where f changes sign, nuclei of any size in
their final development arrive presicely at this size R;. The sizes of the nuclei ean fluctuate near this equili-
brium value.

The existence of zeros of the function f(R) follows from a qualitative analysis of the system of equa~
tions (6) and (7). The case R = f(R) = 0 corresponds to vanishing of the expression in the braces in the sys-
tem indicated.

We shall limit the analysis to the development of a single spherical nucleus in an infinite medium, when
it can be assumed that Ij = 0, In deriving the boundary conditions (2), attention was given to the fact that in
the spherical variant the kinetic parameters ujj and Dj; depend explicitly on the radius and, in addition,
ui=uly +ei/R and Dy = DY + dy/R, where the index 0 relates to coefficients at the plane boundary. For
R = 0, the structure of Eqgs. (6) and (7) assumes the form

(Ai1 + Bu/R)nj + (4, + By/R)n, =0,
(A21 + le/R)nl + (Azz + Bzz/R)’nz = 0.

This system has nonzero solutions when its determinant, which is determined by the quadratic form relative
to 1/R, vanishes, This indicates the fundamental possibility of the existence of two points R, and R,, at which
R = 0, The kinetic scheme of the development of nuclei in this case has two basic variants. If of/6R \R:Rl >
0, then 8f/8R|R=R2< 0, so that nuclei with R, < Ry become overgrown, while the remaining nuclei approach
the value R,. In the opposite variant, nuclei with R;> R, grow, while the remaining nuclei arrive at a stable
state with size R,. The situation described is interesting due to the existence of metastable nuclei.

Thus, for the case when the kinetic parameters do not depend explicitly on time and there exists a class
of solutions nj = nj (R(t)), the boundary conditions (2) together with conditions (3)~(5) completely determine
the boundary kinetics and the laws of motion of the boundary, The more general case, for which v = v (r, 1),
Di = Di (R, t), and, correspondingly, nj = nj (R, t), requires further analysis. !
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